
Personalized Influencer Detection

Topic and Exposure-Conformity Aware

Zekarias T. Kefato
University of Trento

Via Sommarive, 9 I-38123 POVO
Trento, Italy

zekarias.kefato@unitn.it

Alberto Montresor
University of Trento

Via Sommarive, 9 I-38123 POVO
Trento, Italy

alberto.montresor@unitn.it

ABSTRACT
Influence analysis has been the subject of intense inves-
tigation, particularly since the emergence of online social
networks. While early studies have focused on identifying
global influencers, recently the attention has been enlarged
to consider influence from the most diverse perspectives;
e.g., topic-based influence propagation has been extensively
analyzed and several important results have been obtained.
A perspective that has not received sufficient attention is the
study of personalized influence analysis; personalized here
means the capability of influencing a specific user. Guo et
al. have identified this as an important problem, noting that
other kinds of influencers (such as the global ones) are not
necessarily good individual influencers. The goal of this pa-
per is to fill this gap by proposing a mechanism to identify
personalized influencers. Unlike prior studies that heavily
rely on topic similarities, we incorporate interaction histo-
ries, referred as exposure conformity, in learning influence
propagation probabilities. We propose a random-walk algo-
rithm to tackle the problem. We have empirically validated
the effectiveness of our algorithm by comparing it against
several widely-used baseline techniques. Finally, our find-
ings contribute additional insights in support of the need
for personalized influence analysis. Our findings also show
interesting properties with respect to influence depending on
the position of the individuals we are personalizing on.
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1. INTRODUCTION
In online social networks (OSN) such as Twitter, Face-

book, LinkedIn and Weibo, influence analysis is one of the
most important problems, at the core of fundamental appli-
cations like viral marketing and recommendation. A grow-
ing number of studies have tackled this problem from differ-
ent perspectives. Beginning from the early days of OSNs,
many studies [15, 10, 6, 19, 1] have focused on detecting
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global influencers; that is, the most influential users in the
whole network. Even though interesting results have been
obtained, recent studies [20, 8, 3, 14, 4] have proposed al-
ternative and complementary approaches centered around
topics. Starting from the assumption that OSN users are
neither interested nor specialized in all the topics of discus-
sion, these works claim that it is more realistic and effective
to identify topic-based influencers. Users consume informa-
tion that is relevant to a limited number of topics, and their
ability to win others’ attention is stronger in their specialties
rather than in some other topic for which they have a vague
knowledge.

An important challenge in influence analysis has been the
definition of influence by itself [2], which may have different
meanings depending on the type of network. We consider
that a user in an OSN has been influenced by other users if
she has been exposed to their content and acted in response
(conform). For example, a user on Twitter and Facebook
may be exposed via her feed; and could respond (conform)
in the form of replying, commenting, sharing, or re-tweeting.
We assume such forms of reactions as an evidence that she
might have been influenced; and this reaction is referred to
as exposure conformity in this study.

Prior studies [15, 10, 6, 19, 20, 8, 3, 14, 4] are mostly fo-
cused on detecting influencers for the whole network or for
a particular topic. Little emphasis have been given to the
notion of personalized influencer detection. Nonetheless, it
had been argued by Guo et al. [12] that detecting personal-
ized influencers is a critical task, as global influencers and
immediate neighbors are not necessarily the best influencers
for a given user.

The approach of Guo et al. [12], while being the first to
tackle the influencer detection problem, is not topic- and
exposure conformity-aware. Moreover, their algorithm can
neither be directly adapted to the topic-aware variant [16].
The contribution of this paper is to present a novel solution
to the personalized influencer detection problem, where both
topics and exposure conformity are taken into consideration.

The motivation for this work is given by two contradictory
findings. On one side, Weng et al. [20] show some evidence
for the presence of “homophily”, i.e. the tendency of individ-
uals to associate and bond with similar others. Cha et al. [7],
on the other hand, show a small presence of homophily in
a larger dataset. In an attempt to unify these two results,
we combine topic similarity (based on the idea that people
interested in similar topics are probably connected in the
network), and exposure conformity (Assuming that explicit
interactions enables us to uncover informative and hidden



user preferences from equally relevant information sources
on a topic). Our TOpic and exposure-conformity-aware Per-
sonalized Influencers Detection (TopID) algorithm identi-
fies influencers in two phases:

• In the first phase, the algorithm infers a topic profile
for every user by utilizing the content that each user
has generated. This profile models the degree of inter-
est that each user has across T topics as a probability
distribution. The profile is further used to compute
topic similarity between every pair of connected users.
Then it computes the so called exposure conformity
based on interaction histories.

• In the second phase, first exposure conformity and topic
similarity are combined together to estimate influence
propagation probabilities between connected users; th-
en, the influence score of every user upon a given user
and a given topic is computed. Depending on this
score, users will be ranked to identify the top-K influ-
encers of a user on the specified topic.

As a first step towards validating the performance of our
algorithm, we evaluated TopID in the topic-wide influencers
detection task. Towards this end, we pick one of the well-
known techniques, TwitterRank [20], and compare our method
against it. The main difference between our method and
the one of Weng et al.’s is exposure conformity; and we
show that indeed accounting for exposure conformity leads
to better performance. After establishing the performance
improvement in the topic-wide setting, we show that our
approach consistently gives improved results in the person-
alized influencers detection as well. This is in comparison
with a set of widely used baseline techniques and the per-
sonalized version of TwitterRank [20].

The rest of the paper is organized as follows. Section 2
introduces the terminology and presents the problem state-
ment. Section 3 discusses the proposed algorithm. Section 4
reports the experiments and results. Finally Section 5 dis-
cusses related works and we conclude in Section 6.

2. PROBLEM STATEMENT
In this section we define the main concepts discussed in the

paper, i.e. the interaction network, the exposure conformity
and the topic profiles, and we formally state the problem.

Definition 1 (Interaction Network). An interac-
tion network is a graph G = (V,E) where the vertex set V
represents users and an edge (u, v) ∈ E means that the user
u follows v.

The set of followers of a user v is denoted by F←v =
{u|(u, v) ∈ E}, while the set of users followed by v is de-
noted by F→v = {u|(v, u) ∈ E}.

We consider a set of topics Θ = {1, . . . , T}, where T is
a parameter of our approach. Each user is associated to a
topic profile defined as follows:

Definition 2 (Topic profile). The topic profile func-
tion φ : V ∈ [0, 1]T associates each user v with a T -tuple
φ(v) showing the distribution of the degree of interest of user
v with respect to each of the topic t ∈ Θ, for both posting
and consuming contents related to t. Being a distribution,∑T

t=1 φt(v) = 1, where φt(v) denotes the t-th entry of φ(v).
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Figure 1: An interaction network with topic profile,
exposure conformity, and exposure statistics

Whenever a user v generates some content, she exposes
all of her followers F←v to it. A user u ∈ F←v conforms
to the exposure if she responds to it via some interaction
mechanism provided by the OSN, such as retweets in Twitter
and post sharing in Facebook.

Based on the following consideration, we define exposure
conformity as follows:

Definition 3 (Exposure Conformity). The function
$ : E → Z+ represents the degree of exposure conformity
between pair of users; in particular, $(u, v) represents the
number of times that the follower u has conformed to the
exposure from the followed user v.

Figure 1 shows an example interaction network with the
exposure conformity weights associated to edges, and the
topic profiles associated to vertices.

Our goal is to identify the top influencers with respect to
a given user u ∈ V and a given topic t ∈ Θ. In such sense,
our approach is personalized : it provides information about
the most likely users to contact on a particular topic so as
to propagate influence towards the user in consideration.

This problem has not to be confused with the identifi-
cation of the top influencers with respect to a given topic,
called topic-wide influencers detection [20, 14, 3, 8, 4]. As
we shall validate later in Section 4, topic-wide influencers
are not necessarily the best influencers for a specific user.

The TopID problem (TOpic and exposure-conformity-
aware Personalized Influencers Detection) can be identified
as follows:

Problem 1 (TopID). Given the input constituted by
an interaction network G = (V,E), an exposure conformity
function $ and a topic profile function φ, and given a user
u and a topic t, the goal is to identify a scoring function
ψu,t : V → R+ that associates all users with an influence
score measuring their ability to influence user u with respect
to topic t.

By ordering the nodes in non-increasing scoring values
ψu,t, it is then possible to obtain the top-K influencers for
node u, where K is a parameter of the desired output.

All the notations and symbols that are used in the paper
are presented in Table 1.

3. THE TOPID FRAMEWORK
In this section, we present the framework that we use to

compute the scoring function. The framework is composed
of two phases. In the first one, pre-processing, the input
datasets are transformed into the exposure conformity and
topic profile functions necessary to our computation. In the
second phase, scoring, the TopID algorithm first computes
the influence propagation probabilities and then computes
the scoring function.



Notation Description
F←v Users who follow v
F→v Users who v follows
Θ The set {1, . . . , T} of topics
φt(v) The interest of user v in topic t, obtained

from the topic profile φ(v)
$(u, v) Exposure conformity of user u with respect

to the exposure from v
ψu;t(v) Influence score of user v upon user u accord-

ing to topic t
πt(u, v) The similarity between the topic profile of

users u and v according to topic t
ρt(u, v) The influence propagation probability from

v to u (the probability that u will be influ-
enced by v) with respect to t

ΩS A sample space of the set of all possible ac-
tivation paths from the set S to the whole
network

LIDu(S) Local degree of influence of the set S of users
upon u

Table 1: The list of symbols and notations used in
the paper

3.1 Phase 1: Pre-processing
In the pre-processing phase, two tasks are performed: (1)

computing a topic profile for every user and (2) computing
the exposure conformity for every edge.

Topic profiling: OSN platforms provide means for users
to generate posts. We assume that users primarily post on
a limited number of relevant topics, and we employ a topic-
profiling process so as to identify such topics.

For each user v, the topic profile is computed based on
the content (tweets, posts) that they have generated. Each
node is associated to a collection of relevant words extracted
from such content.

We adopt a widely-used technique [20, 14, 4] called La-
tent Dirichlet Allocation (LDA), an unsupervised machine
learning algorithm that is used to classify collection of words
in a corpus into a set of topics, represented as a probabil-
ity distribution [5]. As a result, LDA associates the con-
tent generated by each user v to a topic-proportion vector
φ(v) ∈ [0, 1]T , such that φt(v) can be considered the prob-
ability for user v to show interest on topic t. For example,
for a finite number of topics T , consider the interaction net-
work in Figure 1. The topic profile of u is φ(u) = (0.34, ...),
that corresponds to a 34% probability of interest on the first
topic.

Once we profiled each user with regards to the topics, our
next goal is to compute the topic similarity between users.
Topic similarity has been regarded as an important factor
in measuring influence [20, 14]. The main reason for this
being the notion of homophily from social theory. Accord-
ing to this theory, it is the like-mindedness of a group of
users who led them to form different kinds of links in so-
cial networks [17]. The like-mindedness can be measured
in terms of characteristics, attributes, interest, and other
OSN user behaviors. It has been argued that homophily is
one of the factors for users to form interconnection or in-
teraction links [9, 20]. In other words, connected users are
likely to share interest in similar topics. Furthermore, some
papers [14] have also argued that a user shows interest in

others content when she finds it to be relevant and unique
to her information need.

Therefore, partially agreeing to this line of research, we
consider topic similarity as one of the important influence
factors. We compute topic similarity as Weng et al. [20], i.e.
the topic similarity between two users u and v for a topic t
is denoted as πt(u, v) and is given by:

πt(u, v) = 1− |φt(u)− φt(v)| (1)

Exposure Conformity: Weng et al. [20] focused on
topic similarities to compute influence strength, motivated
by an evidence of homophily in their (relatively small) Twit-
ter dataset (6,748 Singapore users), where 72.4% of the twit-
terers are in a reciprocal relation with more than 80% of
their followers. Later studies [7, 1], however, have shown
that in a significantly larger dataset (54,981,152 users and
1,963,263,821 links) there is much smaller reciprocity (10%).
For this reason, Cha et al. [7] have focused on three influ-
ence metrics, namely in-degree influence, retweet influence
and mention influence.

Exposure conformity is a metric that enables us to identify
an unified measure of influence based on the above findings,
capable to account for all of the observed interaction his-
tories among users. Hence we compute it as the sum of
the measures of three kinds of interaction, namely retweets,
mentions and replies, along a directed edge (u, v), stored in
$(u, v).

3.2 Phase 2: Scoring
Once the desired input is obtained, thanks to well-known

techniques, in this section we compute the influence score
function. In order to do so, we need first to provide a
model for influence propagation probability, by combining
topic similarity and exposure conformity.

Influence Propagation Probability: Let ρt(u, v) de-
note the influence propagation probability from v to u ac-
cording to topic t; in other words, the probability that u
will be influenced by v when v post some content related to
topic t. It is computed as:

ρ′t(u, v) =
$(u, v) + c

1 + E(u, v)
· πt(u, v)

ρt(u, v) =
ρ′t(u, v)∑

w∈F→u
ρ′t(u,w)

(2)

Here, E(u, v) is the total number of times that u has been
exposed to the posts from v (as a simplified assumption we
consider E(u, v) = E(v), where E(v) is the number of posts
of v) and c is a small constant. The constant is included to
prevent vanishing probabilities; i.e., if u and v have never in-
teracted, $(u, v) would be 0, and hence ρt(u, v) = 0. More-
over, the fact that we have not observed any interaction so
far does not necessarily mean that they will never interact.

The notion in the above formulation is that, each time a
user posts some content, all of her followers are exposed to
it. But only those who reacted are leaving traces of influ-
ence propagation. This model allows us to capture influence
propagation probability based on users topic similarity and
the degree of actual activity footprint of users.

To better understand TopID’s computational model, let
us consider the scenario where all the users in F→u have the
same topic profile for a particular topic. Consider the exam-
ple network in Figure 1 and assume that Football-fb is one



Algorithm 1 TopID algorithm

Require: G: The interaction network
Require: Φ: the topic profile function
Require: $: the exposure conformity function
Require: u: The personalized user u
Require: Θ: The set of T topics
Require: α: The teleportation probability
Ensure: ψu;t(V ): Each user’s v ∈ V \ u influence score on

u according to the topics t ∈ Θ.
1: procedure TopID
2: for (w, v) ∈ E do
3: for t ∈ Θ do
4: ρ′t(w, v) = $(w,v)+c

1+E(w,v)
· πt(w, v)

5: ψu;t = τu;t . Initialization
6: repeat
7: ψ′u;t = ψu;t

8: for v ∈ V do
9: for t ∈ Θ do

10: ψu;t(v) = α · τu;t+
[6] (1− α)

∑
w∈F→v

ψ′u;t(w) · ρt(w, v)

11: until Convergence
12: return ψu;Θ

of the topics. In addition, we have two actual Twitter users
(v -@SkyFootball and w -@FullTimeDEVILS) and one ideal
Twitter user (u- Manchester United fan). @SkyFootball is
one of the main stream media user accounts dedicated to
football news. @FullTimeDEVILS is a user account dedi-
cated to the Manchester United Football Club (United) re-
lated news and it is among the popular United fans hot dis-
cussion/debate bases. Our ideal user u represents a typical
United fan who actively engages in discussion related to his
club. Assume that v and w have the same topic profile for
the first topic - fb, i.e. φfb(v) = φfb(w) = 0.6. This leads
us to compute the same topic similarities for πfb(u, v) =
πfb(u,w) = 0.74. Therefore the influence propagation prob-
ability solely depends on $, and hence ρ′fb(u, v) ≈ 0.008
and ρ′fb(u,w) ≈ 0.119. (For simplicity we have ignored the
constant term c in the numerator and 1 in the denomina-
tor.) Clearly we see that even though the two users v and
w are equally relevant in terms of the topic football for the
ideal user u, we notice a significant difference between their
influence strength upon u. The main reason for this comes
due to the exposure conformity that captures a user’s pref-
erence from two equally relevant information sources due to
a deeper level of interest. Even though the topic football
is relevant for this user, his particular interest in football
can be further uncovered by the frequency of interactions he
made with users that are equally relevant for this topic.

The other obvious scenario is where the users in F→u have
completely different topic profiles for a topic. In these kinds
of cases, apparently the exposure conformity serves to bias
the influence propagation probability.

In general, regarding the topic similarity between u and
the users in F→u , one of the following two conditions hold:

1. The topic similarity between u and a subset of the
users U = {w1, . . . , wj} ⊆ F→u for a given topic t is
the same, i.e. πt(u,w1) = . . . = πt(u,wj).

2. The topic similarity between u and a subset of the
users U ′ = {w1, . . . , wp} ⊆ F→u for a given topic t is
different, i.e. πt(u,w1) 6= . . . 6= πt(u,wp).

In the former case, a user w ∈ U is most likely to propagate
influence on the user u compared to any wj ∈ U \w. Then w
should be the user who u has the most frequent interaction
with relative to U , i.e. @wj ∈ U \w : $(u,wj) > $(u,w). In
the latter case, the influence propagation probability from
w′ ∈ U ′ to u is strongly biased, compared to any wp ∈ U ′\w′.
Then w′ is the user who u has the most frequent interaction
with relative to U ′, i.e. @wp ∈ U ′ \w′ : $(u,wp) > $(u,w′).

From these observations we realize that TopID’s compu-
tation scheme does not rely on a strong homophily assump-
tion. Rather it strives to strike a balance between retrospec-
tive analysis and homophily.

The pseudo code for computing the influence propagation
probability presented in this subsection is given in Algo-
rithm 1, lines 2–4.

Score function computation: We now illustrate how
the influence propagation probabilities are used to compute
the influence score of all the users upon a personalized user
according to different topics. The score in turn is used to
obtain the top-K influencers of the given user for a given
topic. That is, given a user u ∈ V and a topic t ∈ Θ, we
compute every user’s v ∈ V \ u influence score on u relative
to t, denoted by ψu;t(v), and rank them accordingly. Recall
that this is the scoring function that we need to compute
in order to address Problem 1. The scoring is based on the
random walk model similar to the topic-sensitive variant of
PageRank-like algorithms [13, 14, 20].

Consider a random item ι pertinent to a topic t, randomly
propagating along the edges in the network starting from
some source user. During its propagation, it jumps from
a user v to w with probability ρt(w, v), i.e., the probability
that w will be influenced by v (the probability that w adopts
item ι from v).

In terms of the random walk model, after the item ι has
arrived at user v, w makes a transition to v with probability
ρt(w, v) and adopt the item. Then a user v is considered
to be a likely influencer of her follower w, i.e., w ∈ F←v ,
relative to t, if v has a strong influence propagation power
upon w so that w is frequently convinced to adopt random
items from v that are pertinent to t. The same principle is
applied to the followers of w: if w manages to frequently con-
vince a follower x, i.e., x ∈ F←w , to adopt items pertinent
to t, w in turn is likely to be the influencer of x accord-
ing t. At this point, consider a chain of follower relations,
i.e. {(w, v), (x,w)} ⊆ E. In an intuitive sense, we assume
that if v is a most likely influencer to w, and w to x, then
by transitivity v is most likely to influence x. These sorts
of chained influence propagations lead us to the recursive
formulation in Equation 3.

ψt(v) =
∑

w∈F←v

ψt(w) · ρt(w, v) (3)

In some sense, Equation 3 enables us to compute the in-
fluence score of v for any topic t.

Similar to topic-sensitive PageRank like algorithms, in
Equation 3 v’s influence according to t is computed recur-
sively as a weighted sum of her followers influence score ac-
cording to t. Nevertheless, our aim is not to merely compute
whether a user v is influential according to t, but rather to
compute whether v is an influencer of a given user u, ac-
cording to t. Hence following the same line of argument as
above, if several items pertinent to t that originate from v
directly or indirectly propagate to u better than any other



source, v is a likely influencer of u based on t. Subsequently
we reformulate Equation 3 as in Equation 4.

ψu;t(v) =
∑

w∈F←v

ψu;t(w) · ρt(w, v) (4)

The above formulation suffers from the well-known prob-
lem of “dangling nodes”, which could trap influence in our
case. Following the familiar trick [18] of “teleportation” we
give the complete scoring function as follows:

ψu;t(v) = α · τu;t(v) + (1− α)
∑

w∈F←v

ψu;t(w) · ρt(w, v) (5)

Where τu;t is the teleportation vector and it is 1 if u = v
and 0 otherwise, implying that the only teleportation that
we have is back to u. α is the teleportation probability, and
it controls the decision that a user w has to make. That is
whether to adopt an item from (make a transition to) a user
v that she follows or to teleport to a random user.

Executing the TopID algorithm according to the follow-
ing scoring function then allows us to obtain an influence
score of each v ∈ V \u on u according to a given topic t ∈ Θ,
φu;t(v). Algorithm 1, lines 5–10 give the high-level proce-
dure followed to compute ψu;Θ(V ). Afterwards we rank each
user to obtain the most likely top-K influencers of u in every
topic t. In the following section we empirically validate the
effectiveness of our algorithm.

4. EXPERIMENTS AND RESULTS
In this section we evaluate the performance of TopID

and compare it against the following four baselines: (1)
TwitterRank influencers (2) TopID topic-wide influencers
– TopID-TW (3) Local IN-Degree rAnk – Linda (4) Global
IN-Degree rAnk – Ginda. For the first baseline, we have
utilized our own implementation of TwitterRank both for
personalized and topic-wide influencers. In the second case,
we consider topic-wide influencers detected by TopID, i.e.
without personalizing on any user. The third and fourth are
scorings based on in-degree and are among the most popular
influence measures that are used in the literature [12, 7, 11,
1]. In the case of Linda we consider the set of users that a
given user follows, which we have ranked according to their
in-degree. Whereas for Ginda we take a set of users globally
ranked according to their in-degree.

The goal of the evaluation is to measure the effective-
ness of the influencers that we have detected in diffusing
or spreading influence. This can be achieved by seeding an
influence diffusion from the set of influencers and measure
the final spread throughout the network according to some
diffusion model. For diffusing the information, we adopt
the interaction network given in Definition 1, opportunely
transposed to reverse the direction of the edges (from an
users to her followers instead of the opposite). We call this
the diffusion network.

4.1 Evaluation Metrics
One of the techniques that is used to evaluate the effective-

ness of algorithms like TopID is a metric based on repeated
simulations of influence diffusion [14]. In this study we adopt
a similar strategy and use the following two metrics: (1) In-
fluence Spread (IS) (2) Local Influence Degree (LID). Since
our focus is on personalized influencers detection, we shall
consider the latter one that is suitable for this detection. The
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Figure 2: Influence spread performance comparison:
TopID topic-wide (TopID-TW) vs TwitterRank

former one (IS), first introduced in [15], estimates a given
users influence power via Monte Carlo experiments. For our
purpose we use it to evaluate the effectiveness of influencers
in spreading influence under the topic-wide setting. That is,
in a given experiment we simulate influence diffusion start-
ing from the set of detected influencers using discrete time
independent cascade diffusion model [15]. In each simula-
tion we keep track of the number of activated users, i.e. the
users influenced during the simulation of influence diffusion
starting from a specific influence source. Then from a set
of R simulations we take the expected number of activated
users.

Based on this metric, we compare our algorithm against
TwitterRank [20] and the results are reported in Figure 2.
The result shows the mean of the expected influence spread
averaged over 10 topics in log-scale along with error margins
computed at 99% confidence interval. We see that in fact
TopID gives an improved performance from the topic-wide
perspective. This experiment is carried out to back the case
for exposure conformity in general. Let us now consider the
evaluation metric intended for the personalized setting.

Local Influence Degree (LID): LID, proposed by Guo
et.al. [12], is a metric for personalized influence maximiza-
tion. LID is computed based on a set of activated (live)
paths from the set S of influencers to the parents of the
personalized user. An active path H denotes a path of in-
fluence propagation over the diffusion network. Suppose the
set of all active paths starting from a set of users S in the
diffusion network is denoted by ΩS , again let the set of all
activation paths from S that do not contain u be ΩS \ u.
Then LIDu(S) of a set S on u is computed by combining
the influence propagation information from S to the active
parents of u and the influence propagation probabilities from
the active parents to u (Figure 4):

LIDu(S) =
∑

h∈ΩS\u

P (H = h)

(
1−

∏
v∈h

(1− ρ(u, v))

)

where P (H = h) is the probability of the event h ∈ ΩS \ u.
Since this space is exponential, the de facto standard to
approximate LID is using Monte Carlo as follows.

LIDu(S) ≈ 1

R

R∑
i=1

1−
∏

v∈hi,hi∈ΩS\u

(1− ρ(u, v))





0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

K
: 2

K
: 4

K
: 8

K
: 10

0.02 0.04 0.06 0.08 0.10 0.12
ρ

Lo
ca

l I
nf

lu
en

ce
 D

eg
re

e
0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

K
: 2

K
: 4

K
: 8

K
: 10

0.02 0.04 0.06 0.08 0.10 0.12
ρ

Lo
ca

l I
nf

lu
en

ce
 D

eg
re

e

Algorithm Ginda Linda TopID TopID−TW TwitterRank

Figure 3: Local influence degree on the High-in (left column) and High-out (right column) users.

We use LIDu(S) to evaluate the influence degree of a set S
of users on a user u that we are personalizing on.

The next task is to pick the users to personalize on, since
we do not intend to fully personalize. For this purpose we
have used the following two criteria : (i) A user with the
highest in-degree and non-zero out-degree – High-in (ii) A
user with the smallest in- and highest out-degree – High-out.
The criteria is applied on a set of users that we have filtered
based on the number of keywords (keywords that summarize
a user’s posts), i.e., users with at least 10 keywords. This is
to increase the chance of getting users who are interested in
at least one topic. We also considered other kinds of users,
for example random and highest in-degree and out-degree
users, and obtained similar results. Due to space constraint
we focus only on the two types of users in Table 2.

u

v

w

x

a

z
i

Figure 4: Activated (Live) paths, solid lines, from
a set S = {a, q, z} of users to parents {v, w, x} of u,
and {v, w, x} are activated users. Dotted arrows are
edges in the diffusion network

●

●

●

●
●

●

●

●

●
●

0.00

0.25

0.50

0.75

1.00

0.02
0.07

0.12
0.17

0.22

rho

LI
D

Algorithm
●

●

TwitterRank

Ginda

Linda

TopID

TopID−TW

High−in

Figure 5: Local influence degree (LID) for fixed
value of K = 4 and High-in user

4.2 Dataset and Experimental Settings
We exploit a publicly-available dataset released for the

2012 KDDCup1, one the most used in information diffu-
sion studies. It is collected from Tencent Weibo, one of
the largest micro-blogging platforms in China and contains
2,320,895 users and 50,655,143 follower relations.

The dataset contains a set of keywords extracted for each
user. Based on documents generated from these keywords,
we have extracted 10 topics, and for each user we have
computed the topic profile across these topics. We utilize
the LDA implementation of Graphlab Create, a machine-

1http://www.kddcup2012.org/c/kddcup2012-track1
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Figure 6: Local influence degree (LID) for fixed
value of K = 4 and High-out user
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Figure 7: Local influence degree (LID) for fixed
value of ρ = 0.02 and High-in user

learning library based on C++ and Python 2. For all the re-
maining tasks, the main algorithm and the evaluation meth-
ods discussed above, we have implemented them in C++.

For the teleportation probability, α, in Equation 5 we have
used α = 0.15. For the Monte Carlo experiments we con-
sider the most widely adopted value for R, R = 10, 000. For
the top-K influencers, we consider K ∈ {20, 40, 60, 80, 100}
in the topic-wide setting; and K ∈ {2, 4, 8, 10} in the person-
alized setting. The selected personalized users’ details are
given in Table 2. All the results reported below are sum-
marized over the top-3 topics of the personalized user. The
distribution over the top-3 topics (topic profile) of each user
is shown in the last column of Table 2.

Finally we evaluate performance according to different val-
ues of ρ and K. That is, with different values of influence
diffusion probabilities ρ ∈ {0.02, 0.04, 0.06, 0.08, 0.10, 0.12}
and different number of influential users ∈ {2, 4, 8, 10}. Fur-
thermore we study the effect of each parameter indepen-
dently, i.e., for different values of one parameter we fix the
value of the other. Here, the intent is to clearly under-
stand the interplay between ρ, K and the local influence
degree on a given user. For this reason, we fix the value
of K at K = 4 and analyze the effect of different values
of ρ ∈ {0.02, 0.07, 0.12, 0.17, 0.22}. On the other side, for
a fixed value of ρ = 0.02 we analyze the effect of different
values of K ∈ {2, 5, 8, 11, 14}

4.3 Results Discussion
In our first experiment we evaluate the performance of

TopID and the baselines across different values of ρ and K.
Figure 3 shows the results that we have obtained for High-in
and High-out users. In both cases we observe that TopID
gives the best results; moreover, as we have anticipated in

2https://turi.com/products/create/
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Figure 8: Local influence degree (LID) for fixed
value of ρ = 0.02 and High-out user

earlier sections, we can clearly observe that the topic-wide
(TopID-TW) influencers are not necessarily influencers of a
given user.

The next experiment is carried out by fixing one param-
eter and observing the effect of the other parameter on dif-
ferent values. In Figures 5 and 6 we report the results for
fixed K = 4 and in Figures 7 and 8 for ρ = 0.02.

In general, in all of our experiments we observe that users
with large out-degree are more susceptible to influence than
those with small. We also observe that ρ has a significantly
greater impact than K in increasing the local influence de-
gree. Increasing ρ causes the LID to quickly increase to-
wards one, whereas increasing K has a very small effect.

User In-degree Out-degree Topic-profile(top-3)
High-in 429,570.0 77.0 〈0.52, 0.17, 0.14〉

High-out 0.0 1242.0 〈0.28, 0.13, 0.11〉

Table 2: Personalized users’ properties, User, In-
degree (#Followers), Out-degree(#Users they fol-
low), Topic-Profile (top-3 topics)

5. RELATED WORK
Influence analysis in social networks has been studied ex-

tensively [15, 10, 6, 19, 20, 8, 3, 14, 4]. Usually the goal is to
identify the most influential users that maximize influence
spread throughout the network. The most notable applica-
tion of such task is viral marketing, where the aim is to seed
the marketing campaign from a small number of users, aka
influencers, and spread influence through the word-of-mouth
effect. In order to effectively execute such a campaign, sev-
eral approaches have been proposed. A number of studies
[15, 10, 6, 19] have addressed this as an influence maxi-
mization problem, specially following the seminal work by
Kempe et al. [15], in which influence maximization has been
formalized as discrete stochastic optimization problem.

Follow up studies [6, 19, 10] have proposed different ways
of improving the simple and effective greedy algorithm pro-
posed in [15]. More recent studies [8, 3, 4, 12, 16] have
casted the traditional influence maximization problem into
different dimensions. Examples of these dimensions include
topic-aware influence maximization, and personalized influ-
ence maximization. In the topic-aware influence maximiza-
tion, the goal is to identify influencers according to specify
topics, whereas in personalized influence maximization the
identification process becomes sensitive to each user. That
is, the influence maximization is carried out for each user
independently.



The study by Guo et al. [12] is the first to address the per-
sonalized influence maximization problem. They formalized
the problem in a similar manner as the standard influence
maximization, and in a suitable way for personalized set-
ting. They have proposed two kinds of efficient algorithms,
the first is a greedy algorithm that is based on Monte Carlo
simulation. The second is an online algorithm called Local
Cascade Algorithm (LCA) based on a “local cascade com-
munity”. LCA employs a trick that allows them to identify
influencers in an on-line fashion without compromising the
effectiveness achieved in their first algorithm.

Very recently, a study by Li et al. [16] have addressed
the problem of personalized influential topic search. In this
study the goal is to answer a query forwarded by an OSN
user. They tackle the problem based on a summary infor-
mation that captures the context of the user in the social
network and topic-representatives and propagation indexes
for efficient query answering. In our study we address a
somewhat different problem and a completely different ap-
proach as described in the paper.

6. CONCLUSIONS
In this study, we have presented a novel algorithm called

TopID whose goal is to detect personalized influencers. The
algorithm is based on two fundamental notions, namely topic
awareness and exposure conformity. Inspired by prior (but
partially contradicting) findings, we strive to find a balance
and unify them. Topic awareness aims at capturing rele-
vant topics for each user and the similarity between users
over different topics, whereas exposure conformity aims at
capturing the interaction histories between connected users.

Following a rather strong evidence for exposure confor-
mity from previous studies, TopID tries not to rely merely
on topic similarity. In fact, we are able to validate our as-
sumptions through several empirical evaluations and differ-
ent kinds of users, and overall achieve consistently improved
results compared to a set of baselines. In future studies we
would like to expand our work by considering interaction
histories among groups of “coherent” users, not just between
pairs of connected users.
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