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Abstract

The wide adoption of social networking and microblogging platforms by a large number of
users across the globe has provided a rich source of unstructured information for under-
standing users’ behaviors, interests and opinions at both micro and macro levels. An active
area in this space is the detection of important real-world events from user-generated social
content. The works in this area identify instances of events that impact a large number
of users. However, a more nuanced form of an event, known as life event, is also of high
importance, which in contrast to real-world events, does not impact a large number of users
and is limited to at most a few people. For this reason, life events, such as marriage, travel,
and career change, among others, are more difficult to detect for several reasons: i) they
are specific to a given user and do not have a wider reaching reflection; ii) they are often
not reported directly and need to be inferred from the content posted by individual users;
and iii) many users do not report their life events on social platforms, making the problem
highly class-imbalanced. In this paper, we propose a semantic approach based on word em-
bedding techniques to model life events. We then use word mover’s distance to measure the
similarity of a given tweet to different types of life events, which are used as input features
for a multi-class classifier. Furthermore, we show that when a sequence of tweets that have
appeared before and after a given tweet of interest (temporal stacking) are considered, the
performance of the life event detection task improves significantly.

Keywords: Social Web, Social Networks, Event Detection, Personal Life Events

1. Introduction

Social networking platforms are considered to be among the foremost means of com-
munication and social interaction. The popularity of these platforms leads to the fast and
real-time spread of information. Twitter is a popular platforms with special characteristics
that makes it ideal for the fast and wide distribution of information. Users tweet in various
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domains such as daily activities [58], life events [18, 20, 21], and the latest local and global
news [56, 54, 34, 35], just to name a few. Several authors have already shown that the
consideration of Twitter content leads to faster access to news compared to traditional news
outlets [32, 23]. For instance, on the day of the 2016 U.S. presidential election, Twitter
proved to be among the largest sources of breaking news with 40 million tweets sent on the
topic by 10 p.m. that day. As another example, there were many user tweets about the
death of the celebrity singer Whitney Houston before it was even mentioned on traditional
media [57, 2]. Many users even exploit Twitter for more personal purposes and share their
daily activities, life happenings, feelings and opinions.

The focus of our work in this paper is on life events, which is a subset of events that
affect an individual’s life. Marriage, graduation, career change, travel, and job promotion
are examples of life events. Li et al. [36] have extensively identified a set of forty two life
events in their work while the work by Gluck and Bluck [30] provides a set of life events
from an autobiographical memory perspective. It is also worth mentioning that life events
can in some cases intersect with general broader events. For instance, an award ceremony
can be considered to be a public event but at the same time it can be regarded as a personal
event for the award recipients.

Lin et al. [37] believe that people have become more inclined to share their life events via
social media such as Twitter making it is possible to identify signs of personal experiences,
emotions, and life decisions from users’ social traces. Therefore, the identification of life event
information from social networks can have important practical applications. For instance,
banks can recommend appropriate loans to couples who have just recently become engaged
or real-estate agents could identify and engage with customers who are about to have a new
baby to explore the possibility of moving into a larger house. Advertising companies can
also benefit from the identification of life events whereby they can promote rings to to-be-
wed couples or baby care products to expecting mothers. Customer insight gathering is an
additional form of exploiting life event information. One way in which marketers gain insight
about consumers is by identifying the occasions in which consumers use their products.
Identifying occasions, such as birthdays, helps in consumer segmentation, answering why
consumers purchase a product, and where and when they use it [9]. Having mentioned these
applications, it is of significant importance to highlight the privacy implications of these
applications. The respect for user privacy needs to be taken with utmost consideration and
these applications are to be exercised only when explicit permission has been granted by the
user. For instance, often times, users grant permission for companies to access their social
content and only under such consent can these applications be executed.

From an entertainment perspective, projects such as Museum of Me (MoM), Facebook
Lookback (FL) and Google Awesome try to produce video clips for users to summarize and
visualize interesting and important moments in their life. These projects understand the
necessity of the existence of methods for life event detection from personal yet social content.
The detection of life events allows such platforms to augment user profiles with information
that might not be explicitly available or provided by the users [31].

The information retrieval community has seen abundant techniques that identify events
from social content. The primary method for identifying events has been to monitor surge
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in specific categories of content in order to pick up mentions of real world events. Event
detection methods based on Graph theory [41], Wavelet and Fourier transform [59], and term
frequency changes [49] are among the methods that primarily rely on changes in the volume
of social content for identifying real world event mentions. While these methods have shown
impressive performance, they are not well-suited for the identification of life event mentions
from personal social timelines for several reasons: i) life events have very low frequency in
a person’s social stream and happen sporadically; therefore, relying on volume surge would
not be an effective method to identify life event mentions; ii) life events are personal events
that appear on a single person’s social stream (either through content posted by that person
or other users). Therefore, methods that focus on content that is generated by a large user
base would not be suitable for the detection of life events; and iii) There is no guarantee
that every user will post about her life events and in fact it has been reported that life event
mentions are not very frequent, making them harder to identify. For these reasons, existing
event detection methods are not applicable for identifying life events.

Another aspect of life event detection that makes it even more challenging is the preva-
lence of social content that are similar in nature to life events but are in fact not mentions
of life events. For instance, there are many travel agencies, event planners and employment
companies that post promotional content on Twitter that look very similar to life events.
For instance, ‘#blackfriday offer get our prewedding Diet Plan for #brides’ is a
tweet that has all the right components of a life event but is in fact the promotion of a Black
Friday deal and not the report of a personal life event. Therefore, the identification of life
events would also need to consider the personal self-report aspect of content as well [36].

In this paper, we address the problem of identifying personal self-report mentions of life
events on Twitter. The objective of our work is to determine whether a given tweet of a
user includes a mention of a life event and if so which specific life event it references. To
this end, our work rests on and explores two fundamental ideas:

1. Given the sporadic and low occurring nature of life events, features that are based on
some notion of frequency would not be suitable features for determining life events. It
is our hypothesis that life events are appropriately identified if semantic features are
taken into consideration. For this purpose, we model life events based on well-known
word embedding techniques such as GloVe [47] to create a representation for life events.
This representation is then used to determine whether a tweet is discussing a certain
life event or not.

2. Furthermore, we hypothesize that life events have a certain build up nature to them in
that people who are about to or are reporting a life event usually show signs of that life
event in their past posts and continue to discuss this event in the future. Therefore, a
temporal consideration of a user’s social stream could serve as a good indication of a life
event. Such an approach will be able to discriminate between personal self-reported life
events and mentions of ‘pseudo-life event mentions’ coming from advertising companies
given the different nature of reporting behavior. For instance, a user reporting his
wedding plans will not constantly and solely talk about the wedding and might post
other content as well whereas a wedding planning company will solely post about
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weddings.

The work proposed in this paper consists of two layers: 1) In the first layer, we build
a multi-label classifier to identify mentions of personal life events on Twitter. The distin-
guishing aspect of our work from the work in the literature is that our work explores the
possibility of using features based on word embeddings. In the experiments, we will show
that using such features significantly improve the quality of the results in terms of recall;
however, this comes at the cost of precision. 2) In the second layer, we propose the idea of
temporally stacking the classifier learnt in layer 1 to improve performance. Our experiments
show that the proposed temporal stacking model improves both precision and recall of layer
1 classifiers.

More specifically, the key contributions of our work can be summarized as follows:

1. We show that a semantic feature derived based on the idea of representing life events
through word embeddings provides strong discriminatory power that can be used for
the purpose of detecting self-reported mentions of life events.

2. We introduce the concept of temporal stacking to show that when weaker life event
classifiers are applied to a certain set of tweets prior to or after a given tweet and
the generated labels are used as features of a second layer classifier that the life event
detection performance improves significantly.

3. We demonstrate the performance of our work on a gold standard dataset that consists
of six distinct life events and compare our work with the state of the art and show
that our work outperforms the state of the art in both precision and recall metrics
after temporal stacking.

The rest of this paper is organized as follows. In the next section, we review the related
work. The overview of the proposed framework for detecting self-reported life event mentions
is introduced in Section 3. Section 4 provides the technical details of our proposed work.
Section 5 is dedicated to the details of our experimentation and our findings. Finally, in
Section 6, we conclude the paper.

2. Related Work

Event detection from within a stream of document collections is one of the active research
topics in information retrieval [4] and is considered to be one of the main five central themes
within the Topic Detection and Tracking (TDT) domain [5]. Document streams can be
collected using social streams, online conversations, email exchanges, blog posts, or corporate
communication. There is significant research work being conducted in event detection with
special focus being given to streaming corpora as well as emerging forms of content including
microblog posts such as Twitter.

Within the literature, events are considered to be real world incidents that occur in a
specific time [61, 55] and are attributed to particular locations [60] and agents who are
affected by or affect the outcome [17]. As such, events on social media are a reflection
of real world events through the content generated by users, e.g., by the tweets that are
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published to describe or react to a real world event [22]. Event detection on Twitter has
been more challenging due to the special characteristics of tweets being short in nature and
the prevalence of misspelling, abbreviations, slangs and the invention of Twitter-speci�c
jargon, e.g., adventuritter is a new term on Twitter used to refer to a twitterer who is
adventurous. Also as discussed in the literature the syntax structure as well as semantics
of content shift given the nature of the Twitter platform [24, 27, 26]; therefore, existing
methods for event detection for classic corpora would not work too well for microblogging
platforms.

Aiello et al. [3] have compared several techniques for event detection on Twitter, and
promoted a technique based on term clustering for �nding trending topics. The six tech-
niques introduced in their work �t into two main categories: document clustering versus term
clustering, where a cluster represents a potential topic of interest. These approaches can be
further categorized into three di�erent classes: probabilistic models, e.g., Latent Dirichlet
Allocation (LDA), classical Topic Detection and Tracking methods, e.g., Document-Pivot
Topic Detection, and feature-pivot methods, e.g., n-gram clustering. Abdelhaq et al. addi-
tionally discuss the role of spatio-temporal features for event detection in their EvenTweet
work [1]. Their work is based on an initial clustering of keywords according to their spa-
tial signature. Keywords that appear in the same location will be included into the same
cluster. These keywords receive a score according to their level of burstiness, their spatial
distribution and other temporal features. Closer to the theme of our paper that focuses on
the role of word embeddings, the recent work by Ertugrul et al. [25] introduces a method
that bene�ts from the embedding representation of words in tweets. In their work, the rep-
resentation of each tweet is developed based on the vector representations of its constituting
words, which is then used to calculate the distance between pairs of tweets to be used in
hierarchical clustering.

Within the event detection literature, a signi�cant amount of work has been dedicated
to extracting features that can be used for modeling and detecting events. One of the most
common features is the 1-gram (bag of words) feature that models a tweet as a collection
of words that have appeared in it. For instance, Di Eugenio et al. [20] and Dickinson et
al. [21] have examined various types of features and found that n-grams are amongst the
most discriminative features for a host of tasks. However, the authors have also reported
that the use of n-grams and bag of words models su�er from the curse of dimensionality,
which is aggravated within the context of Twitter given the wide range of slangs, acronyms
and abbreviations. Another downside to these types of features is that they overlook the
temporal evolution of n-grams and hence signi�cant information could be lost in the process.
Several researchers have moved beyond n-grams and used named entity mentions to model
events on Twitter. The objective has been to extract the four main WH questions related
to events through named entity recognition [21] and semantic role labeling [20]: who, what,
when and where. If properly extracted, named entity mentions can be strong indicators for
events in the real world as repeated mentions of unique locations, organizations, time and
date, among others could lead to the detection of an event. In addition to named entities,
depending on the event that is being tracked or identi�ed, users' sentiments can also point
to mentions of events [18].
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Syntactic features, for example those extracted through part of speech tagging, have
also been widely used for modeling and detecting events on traditional corpora; however,
such syntactic features are not the best features for user generated content on microblogging
platforms given the predominant informal language used in these platforms [20, 36]. More
speci�c to microblogging and messaging platforms, users can include related keywords or
topics in the form of hashtags or express their emotions through the use of emoticons. The
use of hashtags and emoticons had also been shown to have strong discriminative power
for classi�cation purposes on social network data [18]. Furthermore, activity features are a
novel set of features that account for the activities of users in speci�c time intervals on social
networks. For example, the number of tweets posted by a user, number of replies given by
the user to other users and the number of retweets posted by a user are some examples of
activity features. The motivation for using activity features is based on the simple logic that
important events are bound to generate more attention and activity within the immediate
personal network of an individual [18, 21, 17].

Attention features [17] are a di�erent set of features that can be de�ned as signs of
notice taken by other users expressed through reply and retweets that the user has received.
These features reect how many times the user is addressed/talked about by other users in
a given time interval. Similarly, Dickinson et al. [21] have referred to attention features as
interaction features; however, rather than just considering the number of retweets, favorites
or replies, they consider who are the users performing these actions and their interaction
patterns with the user of interest. While these features capture an important aspect of user
activity, these authors found almost no e�ect of interaction features on life event detection
when applied to Twitter. Choudhury et al. [17] investigated a number of user activity and
attention features to detect personal life events in tweets. The focus of their work was on
identifying whether the daily collection of tweets from a user contained the reporting of any
personal events. Contrary to [21], they concluded that life event detection based on attention
features performed best, followed by activity based features. In another work by the same
authors [18], they used activity and attention features along with n-gram sentiment, and
emoticons to detect life events and found that activity and attention features did not yield
substantial improvement contrary to the expectation.

It is common to identify events from social network data based on supervised or unsu-
pervised classi�cation techniques. Based on a recent survey by Farzindar et al. [6], the most
widely used techniques for unspeci�ed event detection from Twitter rely primarily on clus-
tering approaches. In this context, unspeci�ed events are typically expressed as emerging
events, breaking news, and general topics that attract the attention of a large number of
Twitter users. By considering studies on life event detection [18, 20, 21, 12, 13], it can be
said that using supervised techniques is common for life event detection similar to unspeci-
�ed event detection. One of the main obstacles in building models for life event detection is
the curation of labeled life event datasets, which is a time consuming and laborious task. Li
et al. [36] identi�ed common categories of major life events by leveraging large quantities of
unlabeled data and obtained a collection of tweets corresponding to each type of life event.
By using the idea that major life events will elicit signs of congratulations or condolences
from the user's followers, they collected large volumes of high-precision personal life events
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which can be used to train models to recognize the diverse categories of major life events
discussed by social media users. An LDA based topic model was then used to cluster the
gathered tweets to automatically identify important categories of major life events in an
unsupervised way. Also they adopted a semi-supervised bootstrapping approach to expand
event-related tweets. In contrast, the work in [21] has used Crowdower1 as an annota-
tion tool to curate their training life event dataset. Crowdower is an online crowdsourcing
platform, where uploaded datasets are annotated by a large audience.

While most previous works predominantly focus on the use of machine learning tech-
niques for life event detection, Cavalin et al. [13] have been among the few to propose a
hybrid life event detection approach, which introduces the role of rules. Their system is
composed of three modules, namely Ingest, Filter, and Detect. The �rst Ingest module
captures a database of tweets to be used for the search of life events. This is done by con-
sidering a set of words that can possibly relate to all life events of interest in the system.
The Filter module selects the set of tweets that is more likely to contain life events. That is,
by considering a set of simple rules such as a combinations of words, the posts that match
these rules are marked with the corresponding possible life events. The Detect phase is then
carried out to validate the identi�ed life events. For each tweet found in the Filter phase,
the authors then applied a machine learning classi�er to compute the probability of each
tweet belonging to a given life event.

It is also worth noting that the body of literature on event detection from multimedia
content also cover similar work to the work in event detection. For instance, Chen and Roy
[16] and Becker et al [7] focus on identifying a group of photos from Flickr that collectively
represent a real-world event. Their work is primarily based on the temporal and spatial
distributions of tags associated with photos, which are employed within a wavelet transform-
based method to �nd tags with signi�cant peaks. These tags are then used to cluster the
associated photos into event-related groups. In another work [48], the authors also aim at
identifying social events based on multimedia content on Flickr. The authors move beyond
the work of Chen and Roy in that they additionally bene�t from visual descriptors to
cluster images into groups related to real-world events. Ma et al. [39] also address the issue
of multimedia event detection with special focus on identifying rare events in video content.
The novel aspect of this work is to use a variation of transfer learning for using partially
overlapping features given there is usually insu�cient positively labeled instances for rare
events. Finally, the work by Chang et al [15] addresses the problem of pooling frames of a
long untrimmed video such that only relevant video frames to a speci�c event are retrieved
and ordered.

3. Approach Overview

The main objective of our work is to identify personal reports of life events of users on
Twitter. To this end, we propose to turn the life event detection problem into a supervised
machine learning problem where information extracted from the social feed of the users would

1 https://www.crowdower.com/
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Figure 1: Overview of the proposed approach.

be used to form discriminative and indicative features for life events. The overview of the
components and ow of our proposed approach is shown in Figure 1. As seen in the �gure,
our approach consists of two main layers. The �rst layer is responsible for detecting whether
a tweet is a self-reported case of a speci�c life event by training a multi-label classi�er. In
order to build such a classi�er, we use the Word Mover's Distance (WMD) between the tweet
and the di�erent set of life events and use these distances as input features for training the
classi�er. We employ a word embedding-based representation of both tweets and life events
that capture the semantics of the content and at the same time allow us to measure distance
between the tweet and the life event space. In order to learn the word embedding-based
vectors, the Skip-gram model is employed and applied on a large corpus of tweets. Based
on the produced word vectors and an initial set of seed words representing life events, we
model each life event as a collection of word vectors. In the next step, the similarity of each
life event and an input tweet is computed by using the WMD measure. We will discuss
in the experiments section of this paper that the state of the art baseline methods have
very low recall rates but reasonable precision. These methods use features such as hashtags,
emoticons, and sentiments, among others. In contrast, our proposed feature set based on
the WMD measure results in higher recall at the cost of precision.

In the second layer, our aim is to improve the precision of the life event classi�cation
process by proposing the idea oftemporal stacking. In temporal stacking, we propose that if
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features are extracted and used from a certain time period before and after the date in which
the input tweet is posted that a more precise prediction of the life event can be achieved. To
do so, we build a second layer classi�er based on the information of the �rst layer classi�er
and the tweets from before and after the tweet of interest. We show in our experiments
that regardless of the features used in the �rst layer classi�er (our proposed WMD feature
versus other baseline features, e.g., hashtags or emoticons), the performance of the life event
classi�er improves signi�cantly and hence addresses the issue of low precision in the �rst
layer life event classi�er.

4. Proposed Approach

Let us �rst provide some preliminary de�nitions that will help us formalize our approach.

De�nition 1. (Tweet) A tweet tw t
u = ( text; u; t ) is a triple wheretw t

u:text , tw t
u:u and tw t

u:t
denote the tweet content, the user who posted the tweet and its posting time, respectively.

Now, given the objective of our work is to identify life event mentions, we formalize a
concrete representation of a life event as a set of word vectors that represent that life event
in a discriminative way. In our model, each life event is demarcated using a set of words. For
instance, a set of words such as `marriage, engagement, bride, groom, honeymoon' could form
the representation of the Wedding life event. However, in order to go beyond a bag of words
representation of each life event, we employ the vector-based word embedding representation
of each of these words. This way, a life event such as Wedding will be represented as a set
of vectors denoting each of the discriminative words computed through a word embedding
mechanism.

De�nition 2. (Life Event Likelihood) Let t be a speci�c timestamp, givenLE = f le1; le2;
: : : ; lekg, which denotes a collection ofk life events andtw t

u, the life event likelihood of user
u in time t, called LEL t

u, is represented by a set of probabilitiesf pt
u;1; pt

u;2; : : : ; pt
u;k g where

pt
u;k denotes the likelihood of life eventk for user u in time t.

One of the underlying assumptions of our work is that in any given timestamp, there is
a likelihood distribution over the life event set for each user. In other words, it is possible to
calculate a likelihood distribution over the life events for each user in timestampt. It should
be noted that we also include ano-eventsituation, which shows that the user is not engaged
with any life events in timestampt. Now, based on these de�nitions, we can formally de�ne
our problem statement as follows:

De�nition 3. (User Life Event Detection) Let t be a speci�c timestamp, given the set
LE = f le1; le2; : : : ; lekg and tw t

u, the goal of the User Life Event Detection problem is to
�nd LEM t

u, which is the life event that useru is engaged with at timet, from the setLE .

We divide this problem into three sub-problems:Life Events Modeling(extracting LE ),
Tweet Modelingand Life Event Detection (determining LEM t

u).
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4.1. Life Event Modeling

The �rst step of our work is to produce a concrete representation for each life event. As
mentioned earlier, we represent each life event as a set of word vectors that correspond to
discriminative words related to the life events. We refer to these words as life event features.

De�nition 4. (Life Event Features) Let LE be a list of k life events, i.e., LE =
f le1; le2; : : : ; lekg, Life Event Features forlen 2 LE , denoted byLEW n = f w1;n ; w2;n ; : : : ; wN;n g,
is a set of words that describe life eventlen .

As already discussed by Choudhury and Alani [18], it is possible to identify the set of such
discriminative words for each life event. In order to identify such words, we manually curate a
set of hashtags related to each of the life events. For instance, the Wedding life event would be
related to a set of hashtags such as#wedding, #engagement, #bride, #groom, #bridal,
and #weddingdress, among others. We then use snowballing to identify other related and
relevant hashtags for each life event. Once a comprehensive set of hashtags are identi�ed,
we retrieve a set of tweets that are tagged with these hashtags. Based on this process, we
collect a set of tweets for each life event type. Once the tweets are collected, they are re-
viewed to ensure that they are in fact self-reporting tweets about life events. There are many
cases where tweets such as`Don't forget 20% off our wedding photography packages
this winter #uksmallbiz #wedding #weddinghour #bride #groom #offer #savings'
are retrieved because they have relevant hashtags, but they are not about life events. Such
tweets are manually removed from our set . Now based on the �ltered collection of tweets,
we use term frequency and inverse document frequency of terms within the context of each
life event and across all life events to identify terms that are speci�c to each life event. We
select top-5 words for each life event based on this process as shown in the second column of
Table 1. An interesting observation is that the word `I' is seen in all life event types showing
its signi�cance as an indicator for the self-reporting aspect that is of interest to our work.

Once the top-5 words are identi�ed, we use the word embedding approach to identify
highly similar words from within our tweets collection to the set of top-5 words in each life
event. In other words, we look for words based on their similarity in the vector space that are
collectively closest to the set of �ve words for each life event. Various models have already
been introduced for learning word embeddings including neural network language models
[43, 8] and spectral models [19]. More recently, Mikolov et al. have proposed two log-linear
models, namely the Skip-gram and CBOW models to e�ciently learn word embeddings [42].
These two models have a low time complexity and hence can be e�ciently applied on large-
scale corpora. The geometric properties of the semantic space prove to be semantically and
syntactically meaningful, that is, words that are semantically or syntactically similar tend
to be close in this space. Given the fact that the experiments in [42] have shown that the
Skip-gram model outperforms CBOW in identifying semantic relationships among words,
we employ the Skip-gram model for discovering similar words in our study. On this basis,
LEW n is �nally built by including the top-5 words identi�ed in the previous step and the
most semantically similar words to the collection of top-5 words for each life event based on
the Skip-gram model. The collection of words is shown in Table 1.
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Table 1: The list of life events and LEW n for each life event.

Life Event Most co-occurring terms (top-5) Most semantically simi-
lar terms to the top-5

Broken Device Phone, I, Break, Drop, iPhone shatter, deraydailydose, de-
tection, Smartphone, varsi-
tyblue, skip, device, protec-
tor

Device Upgrade Phone, I, Time, Wait, iPhone out-of-pocket, upgrade,
engadgetce, thunderbolt,
thetekguy, overdue, tech,
itox

Moving Move, I, House, Hunting, Wait move, happen, break, high-
schoolmemory, stairmaster,
property, rent, place

New Job Job, I, Start, Excite, Hire job, itjdb, parttime,
overlandpark, practice,
rehearsal, work, collegeperk

Travel I, Vacation, Book, Trip, Holiday travel, tripadvisor, hey-
backpacker, inclusive, from-
mer, traveltip, agent, pack-
age

Wedding Wedding, I, Party, Plan, Husband bride, groom, engagement,
bridal, bhldn, dress, shower,
ring

As a �nal step, we represent each life event as a set of word vectors where each of the
vectors represent the individual words shown in Table 1. We transformLEW n to a set of
words vectorslen = f v(w)jw 2 LEW ng where v is a function that computes the vector of
word w in life event len using the Skip-gram model.

4.2. Tweet Modeling
The objective of this step of our work is to extract features from tweets that could be

used for determining whether a life event is being mentioned or discussed in the tweet or
not. It is common practice to represent a tweet as a bag of words or a bag of n-gram [13, 44].
In such approaches, both the life event and the tweets are considered to be a bag of words
or bag of n-grams and hence matching between life events and tweets can happen naturally.
However, such a modeling approach, often known as textual features, often faces problems
due to the need to deal with slangs, acronyms, abbreviations, and misspelling errors that
are prevalent in tweets. Extracting syntactic features such as part of speech tagging [36] is
another method for modeling tweets. While such features can show reasonable performance
on well-structured textual content, they are less accurate in the context of tweets where
observing correct grammatical rules is less common due to the informal language that the
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users adopt. One of the more e�ective set of features for modeling tweets is semantic features
such as named entities [36], semantic role labels [20], and sentiments [18]. This is particularly
true for determining life events given the fact that life events are often associated with certain
named entities as well as emotions that can be e�ectively extracted from tweets using named
entity recognition and sentiment analysis.

While textual, syntactic and semantic features are the primary set of features used for the
classi�cation of pure textual content-based corpora, as mentioned earlier, some additional
features can be de�ned based on the nature of social microblogging platforms such as activity
or term features. Activity features [21, 17] are based on the actions that users can perform
on the social network such as retweeting, replying or favoriting a certain tweet, which can
in itself carry signi�cant context and meaning that can hence be used as features. Other
features such as hashtags and emoticons are known as term features. Hashtags are often
known to represent the core topic or sense of a tweet and can therefore be considered to be
quite a powerful feature. Furthermore, there are many emoticons, which are topic-speci�c
(speci�c life events) and also can carry sentiment value.

Now while many of these features are expected to have good discriminative power, but
as we will show later in the experiments, they do not perform too well for life event detection
given the informal and short nature of tweets that lead to feature sparsity. Therefore, while
we will adopt these features to build baselines for comparison as suggested in [18, 36], in our
own work, we use the word vector representation of tweets that can be obtained from word
embedding techniques. These features incorporate both syntactic and semantic aspects of
the content and therefore show to be e�ective features for identifying life events.

De�nition 5. (Tweet Word Vectors) Given tw t
u, a Tweet Word Vector, denoted by

twV t
u , is a set of word vectors, each representing the words intw t

u.

We model each tweet as a bag of word vectors where vectors of words are computed using
the Skip-gram model.

4.3. Life Event Detection

Now, given that we have built representations for both life events as well as user tweets,
our objective is to identify mentions of life event self-reports on Twitter. Both of the
representations that we have adopted are based on the word embedding technique where
words are represented through their vector model from the embedding space. Therefore,
it is possible to directly calculate the similarity between a given tweet and the life event
vector representation. Lettw t

u be a tweet written about a life eventlen by user u at time
t, we consider the tweettw t

u to be related to life eventlen if the word vectors in tw t
u are

semantically similar to the word vectors oflen .
The intuition behind our approach is based on how users adopt terminology to express

their intent. The assumption is that if the set of word vectors representing a life event
is accurately selected, then any other life event self-report observed from the users will
use words or terminology that will be semantically close to the life event representation
in the embedding space. Therefore, given the fact that the position of a life event can be
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determined based on the position of its constituent words within the embedding space and
also the position of a tweet can be determined in the same way in the same space, it is
possible to calculate the distance of each tweet to the set of life events under consideration.
For this reason, we de�ne similarity betweentw t

u and life event len by a Tweet-Life Event
Similarity function as follows:

De�nition 6. (Tweet-Life Event Similarity) Given twV t
u and len 2 LE , Tweet Life

Event Similarity is equivalent to the inverse of the Word Mover's Distance between the vector
representations of the words intwV t

u and len and formally denoted assim(twV t
u ; len ).

By considering the fact that the less the distance of two vectors is, the greater their
similarity would be, we have adopted the inverse of the Word Mover's Distance (WMD)
as a way to calculate similarity [33]. WMD is an instance of the Earth Mover's Distance
and measures distance betweentwV t

u and len as the minimum amount of distance that the
embedded words oftwV t

u need to `travel' to reach the embedded words oflen . In WMD, the
distance between two documents is calculated by the minimum cumulative distance of the
best matching embedded word pairs in the two documents. In the context of our work, the
distance betweentwV t

u and len will be based on transporting words intwV t
u to words in len .

The transportation matrix T is a ow matrix in which Ti;j shows to what degree wordi in
twV t

u is transported to word j in len . Matrix Ti;j , which essentially determines what word
pairs from the two documents should be connected to each other, needs to be learnt based
on a linear optimization program. The distance between two documents can be calculated
by minimizing the following linear optimization function:

distance(twV t
u ; len ) = min

jtwV t
u jX

i =1

jlen jX

j =1

Ti;j � d(i; j ) (1)

whered(i; j ) is the distance between wordi of twV t
u and word j of documentlen .

In order to build LEL t
u and considering 0� sim(twV t

u ; len ) � 1, sim(twV t
u ; len ), which is

the inverse ofdistance(twV t
u ; len ), can be the appropriate representation forpt

u;n in De�nition
2.

As mentioned above, using the Skip-gram model helps to preserve the semantic relation-
ship between word vectors and the distances between the embedded word vectors. WMD
utilizes this property of word embeddings and therefore translates this into the relationship
between the vector-based representation of tweet and life events. The distance between a
tweet and life event is the minimum cumulative distance between the words in the tweet to
their matching words in the life event representation.

After computing LEL t
u, we need to �nd LEM t

u, i.e., the life event that useru reported in
tweet tw t

u. Our solution for �nding LEM t
u is to train a classi�er, named life event classi�er,

with the set of LEL t
u as its input and the detected life event of interest as output. The reason

we adopt a classi�er to predict the life event is that the event with the highestpt
u;n does

not necessarily point to the life event being discussed. The detection of the correctLEM t
u

depends not only on theLEL t
u for each individual life event but also on the distribution of
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Figure 2: Schema of di�erent life event detection approaches

LEL t
u over the whole set of life events. Another important consideration is the `no-event'

label that needs to be predicted. If only the set of life events and theirLEL t
u are considered,

we will end up selecting one of the life events that has the highest similarity to the tweet
under consideration even if the tweet is not discussing any life events. Therefore the life
event classi�er is e�ective in helping not only identify the correct life event but also prevents
us from producing too many false positives.

Figure 2 shows a schematic overview of our proposed approach compared to other state
of the art baselines. We use classical supervised learning techniques such as Support Vector
Machine (SVM), Random Forest (RF) and Gradient Boosting Tree (GBT) in order to train
various classi�ers for the life event classi�er. SVM [14] is one of the most e�ective supervised
classi�cation methods. Given a set of training data as input, the SVM training algorithm
builds a model that assigns new examples into one label, based on the margin maximization
strategy. Choudhury et al. [18] have already used classi�ers such as SVM, Naive Bayes, and
Decision Tree for life events detection on Twitter [18]. In their experiments, SVM showed
the best performance in 4 out of 5 life events.

Random Forest and Gradient Boosting Tree are ensemble learning methods. Ensem-
ble methods use multiple learning algorithms to obtain better predictive performance than
could be obtained from any of the constituent learning algorithms alone [53]. Friedman [28]
has shown that gradient boosting trees compete with the state-of-the-art machine learning
algorithms such as SVM with much smaller models and faster decoding time [29]. The main
idea in boosting is that a set of weak learners create a single strong learner. This improves
accuracy by reducing bias, and also variance. Gradient boosting trees have already been
applied as a high-precision classi�er for event detection on Twitter [50, 51]. Pennacchiotti
et al. [46] also used gradient boosting decision trees in order to build a general and robust
machine learning framework for large-scale classi�cation of social media data especially from
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Twitter users posts.
Bootstrap aggregating (bagging) is another method built on top of the random forest

idea to improve stability and accuracy of classi�cation by reducing variance and helping to
avoid over-�tting [10]. Castillo et al. [11] have proposed a supervised learning approach for
the automatic discovery of relevant and credible news events from Twitter [11] and studied
how di�erent learning algorithms perform in their particular learning scenario and found
that random forests achieve high accuracy rates. Liu et al. [38] also propose an event-
based media classi�cation framework in order to study feature importance for modeling the
relation between events and media, and how to deal with missing and erroneous metadata
often present in social media data [38]. Their experimental results show that the best
model is learned by Random Forests in combination with spatio-temporal and tag features.
Furthermore, Meij et al. [40] have proposed to combine high-recall concept ranking and
high-precision machine learning methods including random forests and gradient boosted
regression trees for automatically mapping tweets to Wikipedia articles.

While the above examples show that various classi�cation algorithms have been e�ective
for di�erent tasks on Twitter data; nevertheless, as demonstrated in [12, 13], the life event
detection task seems to be among the more di�cult tasks as it is categorized as an unbalanced
classi�cation problem, which means that the number of tweets that does not contain any
life events is much higher compared to the number of tweets that do in fact talk about
life events. The main reason is that, besides the actual life events, a lot of non-personal
content is generally posted on social networks, such as advertisements, comments related
to celebrities and jokes. As a result the training of a machine learning classi�er to detect
actual life event self-reports with a reasonable precision and recall rates is challenging.

4.4. Temporal Stacking

As we will see later in the experiments section, although the life event classi�er built
in the previous section outperforms the state of the art baseline in terms of F-score, it is
still far from being a strong classi�er. We further endeavour to build a stronger classi�er
by temporally stacking the weaker classi�er (life event classi�er) built in the previous step.
Our intuition is based on how people react and report life events. We hypothesize that users
report personal life events through a sequence of messages. In other words, observations of
life event mentions on social networks has a trajectory. For instance, if someone is about to
get married, they are very likely to post several messages on their social feed or their friends'
social feeds. This could be messages about how they are preparing for the wedding, and all
the related activities. As an example, a Twitter user reporting his marriage on Twitter says:
`Holy [...] I am getting married Today!!!! -Maught' . When looking at the pre-
vious and next message on this user's social stream, one would �nd the following tweets as
well: `Best ring bearer ever!' , `Having fun at the wedding' and `Seeing you two
happy makes me the happiest person alive. Congratulations to my two favourite
people' . As seen here, there are indications of the life event in the post and pre related
content. Based on this, we hypothesize that it might be possible to build a stronger classi�er
by temporally stacking the classi�er from the previous step.
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Figure 3: Schematic view of the proposed temporal stacking model.

In order to utilize the life event classi�ers from the previous step for building a stronger
classi�er, we use them to label tweets before and after the tweet of interest up to a maximum
of m tweets. We use the labels produced by the weaker life event classi�ers to train a new
classi�er with the goal of predicting the life event class labels. More concretely, we employ
the classi�er built in the previous step for the various life events to label tweets before and
after the life event of interest. We use these labels as the input features of a second classi�er,
which we call a stacked classi�er.

In a study of trends on Twitter, Kwak et al. [34] discovered that most trends last for
one week once they become `active'. Since we follow a similar intuition, we select a time
period of one week prior and one week after the date that a given tweet has been posted. We
chose not to use a �xed number of tweets within the temporal stacking process because the
frequency of tweeting di�ers from one user to another. For example, while one user might
tweet 20 times in one day, another user might take two months to tweet the same number of
tweets. Therefore, for the latter type of user, taking 20 tweets would mean that information
from two months ago would be considered when deciding on a recent life event, which is not
relevant. Therefore, tweets from a one week time period were considered in our work so as
to ensure their relevance to the current life event.

The schematic view of the temporal stacking model is shown in Figure 3. We will show
that when such temporal model is built based on the weaker life event classi�ers, it will
produce very strong classi�ers of life event mentions on Twitter reinforcing our hypothesis
that the temporal stacking of the results of a weak classi�er on a sequence of social content
can lead to the development of a strong classi�er. Figure 4 shows an example case for
when temporal stacking was e�ective. In this case, the proposed life event detection method
detected the tweet of interest (in the green box) as a tweet containing the wedding life
event. However, it is clear that this is a promotional material. When temporal stacking was
used, i.e., the weak life event classi�er was applied to tweets from one week before and after
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Figure 4: Sample tweets prior to and after the tweet of interest used for temporal stacking.

the tweet of interest, and those labels were used to predict the life event, it was correctly
determined that the tweet does not contain any life events. The reason that the temporal
stacking method is able to determine that this is not a personal life event is that all tweets
mentioned in this Twitter timeline are all related to weddings, which is a typical pattern
observed when promotional material are presented; however, for an actual user who reports
his/her wedding, it is likely that they would discuss other topics other than their wedding
on their timeline or be engaged with responding to other users (congratulatory) messages
about their wedding, which would have a di�erent pattern than that of the promotional
material which is consistently focused on wedding content across time.

5. Experiments

We perform extensive experimentation to answer the following research question: `given
a certain tweet, would it be possible to determine whether the tweet is about a self-reported
life event or not?' In this section, we describe the experimentally obtained results and
evaluate the proposed models for life event detection.

5.1. Dataset
In our experiments, we bene�ted from three sources of tweets: (1) The �rst set of tweets

was a collection of 10 million English language tweets that were selected from the Spritzer
Twitter stream grab, which is publicly available2. The �rst 10 million tweets from this tweet
collection were selected. The purpose of this �rst corpus was to learn the word embeddings;
therefore, we initially preprocessed the tweets in this corpus by removing URLs as well as
reposting marks such as RT and //. We then removed all English stop words from the tweets.

2https://archive.org/details/archiveteam-twitter-stream-2012-01
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Finally, we bene�ted from the Stanford CoreNLP package to lemmatize all the words in the
tweets. Once the preprocessing was completed, the cleaned set of 10 million tweets was
used for learning the vector representation of the words used in tweets as well as learning
the vector representation of the life events as explained earlier using the Deeplearning4J
framework3. (2) Furthermore, and in order to evaluate our work, in collaboration with our
industrial partner, we developed a second corpus in the form of a gold standard dataset of
tweets that included instances of di�erent types of life events as well as negative samples.
This gold standard4 consists of 66,362 tweets that are either labeled with a speci�c life event
or labeled as `no-life event'. The no-life event tweets were a collection of tweets that were
reviewed by the experts and determined not to be a mention of a life event. The details of
the distribution of the life events in the gold standard are shown in Table 2. (3) Finally, and
for the purpose of accessing the tweets from one week before and after the tweet of interest,
we used Twitter API to retrieve tweets from this two week time frame per tweet in the gold
standard dataset.

Table 2: Speci�cation of the corpus and the gold standard dataset.

Life Event Number of tweets
Corpus N/A 10 million

Gold Standard Dataset

Broken device 5,768 8.69%
Device upgrade 2,822 4.25%
Moving 4,001 6.03%
New job 4,001 6.03%
Travel 3,480 5.24%
Wedding 4,015 6.05%
Negative samples 42,275 63.7%

As shown in Table 2, we have preserved the signi�cant class imbalance that is prevalent
in life events on Twitter in this dataset. Given most tweets do not necessarily talk about a
life event on Twitter, in our gold standard dataset, we have over 63% of no life event labeled
tweets.

5.2. Benchmarks, Features and metrics

In order to benchmark our work, we use the most related and state of the art work in
the literature to compare with our work. We adopt the work by Li et al. [36] to serve as
the baseline. The authors have proposed a pipeline system to detect major self-reported life
events on Twitter. Given the code for this work was not publicly available, we replicated their
work based on the details provided in their paper with the exact same settings mentioned
by the authors where appropriate. To do so, we have extracted features as described in that
paper such as sequence of words, named entity mentions, and the top-40 most relevant terms

3https://deeplearning4j.org/
4Could be available after signing NDA.
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to the life event. For the top-40 most relevant terms, we follow the details provided by the
authors to automatically create a dictionary based on topic models. Now, if a dictionary
word exists in a tweet then the left and right context words within a window of size three
along with their part of speech tags are considered as well. In order to generate the named
entity mentions and the part of speech tags, we use Ritter et al.'s Twitter NER system
[52] and Twitters POS package [45] for this purpose. We train a multi-class maximum
entropy classi�er with all these features as proposed by Li et al. [36], which showed the best
performance in their experiments.

In addition and in order to build additional baselines beyond the one proposed in [36],
we have adopted other features as explained earlier in the paper, namely semantic and term
features based on the work in [18]. The classi�cation of these features is shown in Table 3.
The table shows the feature classes, types and the methods with which they were extracted.
Finally and in order to train our own proposed model, we implement the feature described
based on the Word Mover's Distance (WMD) formalized in De�nition 6. We use these
features to train several machine learning methods such as random forests, gradient boosted
trees and SVM to detect life event mentions in tweets.

Table 3: Types of features and their extraction methods.

Features Type Tools

Semantic
Named entities TAGME, TextRazor
Sentiment analysis Stanford CoreNLP

Term
Hashtag not required
Emoticon not required

Our Feature Word Movers Distance Gensim

In the next subsection, we will show that while the classi�er built based on the WMD
feature outperforms all the other baselines in terms of F-score, it would still be considered
to be a weak classi�er. Therefore, as explained earlier, we use this classi�er to train stronger
classi�ers by temporally stacking the results applied to a certain time interval of tweets
before and after the tweet of interest.

In terms of evaluation metrics and as proposed in [36], we compare the performance of our
work with the baselines using standard information retrieval measures including precision
(how many of the life events detected by our method were part of the ground truth set),
recall (how many life events in the ground truth set were detected by our method) and
F-Score. In calculating the metrics, we employ a10-fold cross validationstrategy for both
the experiments of the �rst layer classi�er as well as the temporal stacking.

5.3. Experiment Setup
5.3.1. Life Event Modeling

We model life events as bag of word vectors where each word vector has been derived
from a Skip-gram model that we implemented using Deeplearning4j5. In order to run the

5http://deeplearning4j.org/
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Skip-gram model on our corpus, we used the default parameter settings of the Deeplearning4j
library and set the layer size to 100, which means that the length of the word vectors will be
equivalent to 100. Further, the learning rate is set to 0.025, the value of window size is set
to 6 because the average number of words in a tweet is close to 6 based on an experiment
that we did on 1 million tweets. Also, words are ignored if they have been observed less
than 5 times.

5.3.2. Life Event Detection
In our experiments, we apply SVM, Random Forest and Gradient Boosting Tree classi�ers

implemented in LIBSVM6, Java Machine Learning7, and Sklearn8 packages, respectively. For
SVM, the Radial Basis Function (RBF) kernel is used and the parameter c and gamma are
set to 1 and 0.5, respectively. Learning rate and Maximum of depth of tree parameters
are set to 0.01 and 3 respectively in Gradient Boosting Tree. For Random Forest, we set
parameters to default values used in the Java-ML package.

5.4. Results and Discussion

5.4.1. Life Event Detection
We used our ground truth annotations to evaluate the life event detection models with

10-fold cross-validation. That is, the annotated instances are randomly split into 10 subsets:
9 subsets were used to train a classi�er and the remaining subset used as test data. The �nal
result is averaged over 10 iterations so that each subset can be used as a test case once. We
used three classi�ers, Gradient Boosting Tree, Random Forest and Support Vector Machine.
These classi�ers took the word movers distance as the input feature set and classi�ed a given
tweet as either one of the six life events or no life event at all. Table 4 shows the precision,
recall obtained for the classi�ers individually for each life event. As shown in Table 4, there
is a clear trade-o� between precision and recall. RF and GBT produce better quality results
compared to SVM; while there are no signi�cant di�erences between RF and GBT. Given
RF and GBT provide comparative and similar results, we adopt GBT to further compare
our work with the baseline methods and also to build the temporal stacking model.

The results of comparing our proposed approach to the baseline proposed in [36] for each
life event is reported in Table 5 in terms of precision, recall and F-score. As shown in this
table, our layer 1 approach shows superior performance compared to the baseline in the
F-score measure in all life event classes. However, the table also shows that the baseline has
better precision in 5 out of the 6 life event classes.

As mentioned, the baseline method uses four features, namely word, named entity men-
tions, dictionary and context window. Among these features, named entity mentions and
context window capture semantic and syntactic aspects of tweets respectively, while, word
and dictionary models capture the textual aspects of tweets. One of the main reasons for

6http://www.csie.ntu.edu.tw/ ~cjlin/libsvm/
7http://java-ml.sourceforge.net/
8http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

GradientBoostingClassifier.html
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Table 4: Performance of the proposed life event detection classi�ers based on WMD.

Life Event/Classi�er RF GBT RBF SVM

Broken Device
Precision 0.62 0.57 0.34
Recall 0.56 0.54 0.61
F-Score 0.58 0.55 0.43

Device Upgrade
Precision 0.63 0.72 0.31
Recall 0.33 0.32 0.64
F-Score 0.43 0.44 0.41

Moving
Precision 0.64 0.66 0.36
Recall 0.47 0.46 0.54
F-Score 0.54 0.54 0.43

New Job
Precision 0.74 0.76 0.54
Recall 0.67 0.65 0.77
F-Score 0.70 0.70 0.63

Travel
Precision 0.76 0.73 0.61
Recall 0.71 0.75 0.73
F-Score 0.73 0.74 0.66

Wedding
Precision 0.51 0.57 0.02
Recall 0.21 0.11 0.64
F-Score 0.29 0.18 0.03

the high precision of the baseline can be attributed to the top-40 word dictionary that is
built based on topic models; however, this is also the explanation for the low recall of the
baseline as it restricts its search space to the words in the dictionary.

Furthermore, the problem of detecting personal life event detection from a tweet can
also be viewed as a text classi�cation task. Therefore, we used a strong end-to-end deep
learning based convolutional neural network model, known as Crepe, that has already shown
to be an accurate text classi�er as another baseline [62]. We train and evaluate the deep
learning model based on a 10-fold cross validation strategy with 7 classes including six life
event classes and one non-life event class. The results are included in Table 5, which shows
that the performance of the end-to-end deep learning-based classi�er is comparable to the
baseline and our proposed approach in terms of precision; however, Crepe su�ers from low
recall rates similar to the baseline.

Now as proposed in [18], we further build more baselines for comparison with our layer 1
work based on additional features not considered in [36] including NER, emoticons, hashtags
and sentiment analysis. We use these features to learn gradient boosting trees and evaluate
the developed models through a 10-fold cross-validation mechanism on the gold standard
dataset. Table 6 shows the results of using the additional features to build life event classi�ers
and how their performance compares to our layer 1 approach. The results in this table

9Given the implementation of these techniques are not available, we have implemented these methods
according to the available publications and hence use the word `inspired'.
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Table 5: Comparison between our proposed approach and the baseline method inspired by [36]. All results
are statistically signi�cant at p-value < 0:019.

Life Event/Classi�er Baseline [36] Crepe [62] Our Proposed Approach

Broken Device
Precision 0.67 0.66 0.57
Recall 0.33 0.22 0.54
F-Score 0.44 0.327 0.55

Device Upgrade
Precision 0.70 0.29 0.72
Recall 0.19 0.29 0.32
F-Score 0.30 0.29 0.44

Moving
Precision 0.67 0.3 0.66
Recall 0.24 0.15 0.46
F-Score 0.35 0.2 0.54

New Job
Precision 0.13 0.78 0.76
Recall 0.57 0.07 0.65
F-Score 0.66 0.09 0.70

Travel
Precision 0.79 0.61 0.73
Recall 0.59 0.19 0.75
F-Score 0.68 0.29 0.74

Wedding
Precision 0.63 0.54 0.57
Recall 0.04 0.18 0.11
F-Score 0.07 0.27 0.18

provide signi�cant insight into the e�ective features that produce high precision life event
classi�cation. As seen in the table, our layer 1 approach provides superior performance in
terms of F-score on 5 out of 6 life events. Its recall is also reasonable and better than the other
baselines in almost all life events. However, similar to the comparison with baseline from
[36], our layer 1 method shows a lower precision for life event detection. When considering
the di�erent features, it is clear that hashtags when used as features provide the highest
precision for detecting life events given they produced the highest precision in all six life
events. In other words, hashtags are quite discriminative features for life event detection.
However, they su�er from a very low recall. The interpretation of this would be that when
available, hashtags are very strong indicators of life events but it turns out that such hashtags
are not very frequently observed withlife event tweetsas shown in Table 6.

Furthermore, as seen in Table 6, sentiment based features are also reasonable indicators
for life events. This feature provides balanced results for precision and recall for the various
life events. One of the signi�cant observations is that the sentiment-based feature produces
the best F-score for the Wedding life event. This shows that when sentiments are abundant
for a life event such as weddings, in contrast to other life events such as travel or a new job,
sentiment features provide a strong indication of the life event.

Another important observation is that emoticons are also strong indicators of life events
when present. The precision of the classi�er learnt based on emoticons is reasonable but the
recall rate is very low. Furthermore, it is important to mention named entity mentions as

22



Table 6: Comparison between our proposed approach and the baseline method inspired by [18].

Life Event/Classi�er NER Emoticons HashTag

Hybrid of
NER,
Sentiment,
Hashtag,
Emoticons

Our ap-
proach

Broken Device
Precision 0.61 0.43 0.82 0.63 0.57
Recall 0.35 0.001 0.05 0.39 0.54
F-Score 0.45 0.001 0.09 0.48 0.55

Device Upgrade
Precision 0.64 0.2 0.81 0.72 0.72
Recall 0.16 0.001 0.12 0.26 0.32
F-Score 0.26 0.001 0.20 0.38 0.44

Moving
Precision 0.71 0.62 0.86 0.74 0.66
Recall 0.1 0.01 0.02 0.14 0.46
F-Score 0.17 0.02 0.04 0.24 0.53

New Job
Precision 0.66 0.48 0.79 0.7 0.76
Recall 0.27 0.01 0.1 0.36 0.65
F-Score 0.39 0.02 0.16 0.47 0.7

Travel
Precision 0.57 0.52 0.84 0.77 0.73
Recall 0.06 0.025 0.14 0.2 0.75
F-Score 0.10 0.05 0.24 0.32 0.74

Wedding
Precision 0.56 0.42 0.82 0.74 0.57
Recall 0.09 0.01 0.13 0.24 0.21
F-Score 0.15 0.03 0.22 0.36 0.31

features. These features su�er from the recall problem similar to emoticons and hashtags.
One of our observations is that although we used a Twitter speci�c API to identify and pick
out named entity mentions, due to the informal and unique nature of tweets, the detection
of the named entities is extremely di�cult leading to the poorer recall rates.

We further performed additional experiments to see whether our proposed feature based
on the word mover's distance has synergistic impact on the other features included in Table
6. To do so, we retrained the models by concatenating our proposed feature to the baseline
features and the results are reported in Table 7. As seen in the table, when our proposed
feature is concatenated to the baseline features, the performance of the baseline features
improves signi�cantly especially as it pertains to the recall metric. When comparing Tables
6 and 7, it can be seen that the recall rates of the baseline features are extremely weak, while
the recall rate of our proposed approach is strong. However, the inclusion of our feature
with the baseline features substantially improves the recall rates. In conclusion, the Hybrid
+ Embed approach that includes NER, Sentiments, Emoticons, Hashtags as well as our
proposed feature (Embed) shows the best performance across all life event types.
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